Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture.
نویسندگان
چکیده
A mixed microbial culture capable of metabolizing deoxynivalenol was obtained from soil samples by an enrichment culture procedure. A bacterium (strain E3-39) isolated from the enrichment culture completely removed exogenously supplied deoxynivalenol from culture medium after incubation for 1 day. On the basis of morphological, physiological, and phylogenetic studies, strain E3-39 was classified as a bacterium belonging to the Agrobacterium-Rhizobium group. Thin-layer chromatographic analysis indicated the presence of one major and two minor metabolites of deoxynivalenol in ethyl acetate extracts of the E3-39 culture filtrates. The main metabolite was identified as 3-keto-4-deoxynivalenol by mass spectroscopy and 1H and 13C nuclear magnetic resonance analysis. The immunosuppressive toxicity of 3-keto-4-deoxynivalenol was evaluated by means of a bioassay based on the mitogen-induced and mitogen-free proliferations of mouse spleen lymphocytes. This compound exhibited a remarkably decreased (to less than one tenth) immunosuppressive toxicity relative to deoxynivalenol, indicating that the 3-OH group in deoxynivalenol is likely to be involved in exerting its immunosuppressive toxicity. Strain E3-39 was also capable of transforming 3-acetyldeoxynivalenol but not nivalenol and fusarenon-X.
منابع مشابه
Detoxification of Deoxynivalenol via Glycosylation Represents Novel Insights on Antagonistic Activities of Trichoderma when Confronted with Fusarium graminearum
Deoxynivalenol (DON) is a mycotoxin mainly produced by the Fusarium graminearum complex, which are important phytopathogens that can infect crops and lead to a serious disease called Fusarium head blight (FHB). As the most common B type trichothecene mycotoxin, DON has toxic effects on animals and humans, which poses a risk to food security. Thus, efforts have been devoted to control DON contam...
متن کاملEnzymatic detoxification of Don in transgenic plants via expression of Fusarium graminearum Tri101 gene
Fusarium graminearum is causal agent of economically catastrophic disease of cereal Fusarium Head Blight (FHB) around the world. In addition to causing a loss of yield, this fungus causes serious threats to humans and animals due to the contamination of grain with the trichothecene mycotoxin. TRI101 gene, a Fusarium spp. gene, encodes an enzyme that transfers an acetyl group to the C3 hydroxyl ...
متن کاملMicrobial detoxification of eleven food and feed contaminating trichothecene mycotoxins
BACKGROUND Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to a...
متن کاملNew tricks of an old enemy: isolates of F usarium graminearum produce a type A trichothecene mycotoxin
The ubiquitous filamentous fungus Fusarium graminearum causes the important disease Fusarium head blight on various species of cereals, leading to contamination of grains with mycotoxins. In a survey of F. graminearum (sensu stricto) on wheat in North America several novel strains were isolated, which produced none of the known trichothecene mycotoxins despite causing normal disease symptoms. I...
متن کاملModification of the Mycotoxin Deoxynivalenol Using Microorganisms Isolated from Environmental Samples
The trichothecene mycotoxin deoxynivalenol (DON) is a common contaminant of wheat, barley, and maize. New strategies are needed to reduce or eliminate DON in feed and food products. Microorganisms from plant and soil samples collected in Blacksburg, VA, USA, were screened by incubation in a mineral salt media containing 100 μg/mL DON and analysis by gas chromatography mass spectrometry (GC/MS)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 63 10 شماره
صفحات -
تاریخ انتشار 1997